<< Forum maths || En bas
[Maths]DM de math
Message de razorlight15 posté le 08-09-2007 à 17:04:58 (S | E | F | I)
Bonjour, je souhaite avoir de l'aide pour un devoir maison de math que je n'arrive pas totalement a faire :
ABCD est un rectangle, AB=2 AD=1. M est un point variable sur le segment [BC]. On pose BM=x. On appelle N le point d'intersection de (AM) et (CD) quand il existe. f est la fonction définie par f(x)=CN.
1. Quel est l'ensemble de définition de f?
2. Conjecturer le sens de variation de f et la limite de f en 0.
3. Exprimer CN en fonction de x, et montrer que f(x)=(-2x+2)/x.
4. Étudier les variations.
5. Déterminer le limite de f en 0.
6. Dresser le tableau de variation de f.
J'ai des problèmes pour les questions 1 et 2 que je n'arrivent pas à traiter. Pour la question 3 j'ai fais thales mais cela n'arrive pas au résultat espéré donc je ne sais plus comment faire. Pour la 4 je pense calculer la dérivée mais pour moi la 4 et la 6 ce sont les mêmes question enfin le même but!!
Merci de m'expliquer tout cela!!
Merci d'avance!
-------------------
Modifié par webmaster le 27-01-2008 21:01
Message de razorlight15 posté le 08-09-2007 à 17:04:58 (S | E | F | I)
Bonjour, je souhaite avoir de l'aide pour un devoir maison de math que je n'arrive pas totalement a faire :
ABCD est un rectangle, AB=2 AD=1. M est un point variable sur le segment [BC]. On pose BM=x. On appelle N le point d'intersection de (AM) et (CD) quand il existe. f est la fonction définie par f(x)=CN.
1. Quel est l'ensemble de définition de f?
2. Conjecturer le sens de variation de f et la limite de f en 0.
3. Exprimer CN en fonction de x, et montrer que f(x)=(-2x+2)/x.
4. Étudier les variations.
5. Déterminer le limite de f en 0.
6. Dresser le tableau de variation de f.
J'ai des problèmes pour les questions 1 et 2 que je n'arrivent pas à traiter. Pour la question 3 j'ai fais thales mais cela n'arrive pas au résultat espéré donc je ne sais plus comment faire. Pour la 4 je pense calculer la dérivée mais pour moi la 4 et la 6 ce sont les mêmes question enfin le même but!!
Merci de m'expliquer tout cela!!
Merci d'avance!
-------------------
Modifié par webmaster le 27-01-2008 21:01
Réponse: [Maths]DM de math de marie11, postée le 08-09-2007 à 18:06:06 (S | E)
Bonjour.
Pour que le point N existe, il faut que les droites (AM) et (DC) soient sécantes.
1 - Le point M appartient donc au segment [BC] privé du point B, soit ]BC].
2 - Lorsque M se déplace sur ]BC], N décrit la demi-droite [Cx).
On constate que si M s'éloigne de B, alors N se rapproche de C, autrement dit si x augmente, f(x) diminue. La fonction f est donc décroissante.
Lorsque M coïncide avec B (x = 0), les droites (AM) et (DC) sont parallèles.
La limite est donc l'infini.
3 - Il suffit d'appliquer le théorème de Thalès :
CN/AB = MC/MB <══> CN = AB* MC/MB
soit
CN = 2*(1 - x)/x
soit
f(x) = (2 - 2x)/x
Sous forme algèbrique on détermine facilement l'ensemble de définition : ]0;1]
Calculez la dérivée, vous constaterez que sur ]0;1] elle négative. f est donc décroissante.
Elle décroît de +inf à 0
Réponse: [Maths]DM de math de razorlight15, postée le 09-09-2007 à 15:54:26 (S | E)
Tout d'abord je tient a vous remercier mais il y a des choses que je ne comprends pas!!
Pour la question 1 si j'ai bien compris l'ensemble de définition est donc ]BC]?
Pour la question 2 je ne comprends pas non plus comment vous arrivez a trouver la limite!!
Vous dites aussi que l'ensemble de définition est ]0;1]mais pour moi c'est -inf 0 et 0 +inf avec 0 exclu non?
Merci de me répondre au plus vite!!
Réponse: [Maths]DM de math de marie11, postée le 10-09-2007 à 16:02:45 (S | E)
Bonjour.
Voici un lien :
Lien Internet
Le point M appartient au segment [BC].
On construit N à partir d'une position de M sur [BC].
On peut obtenir le point N à la seule condition que M soit DISTINCT de B.
N est alors l'intersection des droites (AM) et (DC).
Donc l'ensemble de définition est ]BC].
Remarque importante :
Si M est confondu avec B, alors les droites (AM) et (CD) sont PARALLÈLES, et il n'y a pas d'intersection. On dit alors que le point C est à l'infini.
C'est pour cette raison que la limite est l'infini si M est en B.
Numériquement BC = 1
Donc x prend ses valeurs dans ]0 ; 1]. 0 étant exclu puisque f(o) n'est pas déterminé.
limite de f(x) lorsque x ──> 0 est +
On écrit :
-------------------
Modifié par magstmarc le 10-09-2007 17:58
En fait pour l'ensemble de définition il s'agit des valeurs possibles pour x.
Comme x=BM et que M décrit le segment [BC] privé du point B...
(je pense que Razorlight peut conclure tout seul)
Réponse: [Maths]DM de math de razorlight15, postée le 11-09-2007 à 14:29:03 (S | E)
Je tient a vous remercier tout les deux, c'est vraiment super gentil!!
Encore merci et à bientôt jespere...
++